MAPPING INVASIVE HERACLEUM SOSNOWSKYI MANDEN WITH

SATELLITE REMOTE SENSING FOR EUROPEAN RUSSIA: THE PRELIMINARY RESULTS

Franziska Katharina Weichert¹, Marina Shaikina², Eugenia Elkina³, Anna Komarova⁴,

Thomas Nord-Larsen¹, Alexander V. Prishchepov¹

¹University of Copenhagen, Denmark <u>alpr@iqn.ku.dk</u>; ²Tsytsin Main Moscow Botanical Garden RAS, Russia, e-mail: <u>mshajk@yandex.ru</u>; ³Space Research Institute RAS, Russia <u>e-yolkina@yandex.ru</u>; ⁴Greenpeace Russia, Russia <u>anna.komarova@greenpeace.org</u>

Goals

Hogweed Sosnowskyi (**HS**) is one of the most dangerous invasive species in Russia. Accurate and timely mapping of **HS** is essential for successful control of **HS**. Our aim was to test suitability of freely available radar Sentinel-1,optical Sentinel-2 imagery and Random Forest machine-learning classification methods to map **HS** in temperate Russia (Moscow oblast study area).

Study area and Hogweed Sosnowskyi

Moscow oblast is characterized by widespread agricultural land abandonment and the spread of *HS*.

Figure 2. Hoaweed Sosnowskyi (HS)

Figure 4. Classified land-cover classes with Sentinel-2, including HS

Figure 3. Phenology curves for Normalized Difference Moisture Index for land-cover types, including HS

Data and Methods

1. Image processing
 2. Preparation of training sample
 3. Parameterization and Classification with Random Forest

Workflow

5. Statistical tests on difference between classified maps

4. Sampling and validation of classified maps with ground reference data

Step 1. Cloud-free monthly composites Sentinel-1, Sentinel-2 A, B for 2019. Cloud computational environment: Google Earth Engine.

Step 2. Expert-based selection of training area, selection minimum mapping unit, distribution across the study area using Sentinel-2, World View imagery

Step 3. Evaluation of number of trees, input features, other Random Forest parameters. Classification with Random Forest in Google Earth Engine

Step 4. Two-stage stratified random sampling. Sampling data collection during the field campaigns in 2021. Accuracy assessment

Step 5. Statistical non-parametric McNemar tests to identify difference in accuracies among the classified maps.

Results and Discussion

- Error-adjusted area estimates suggest up to 133,000 Ha were occupied with HS in Moscow oblast by 2019 (mapped with Sentinel-2)
- Preliminary **HS** user's accuracy 93%, producer's accuracy 30%
- HS was concentrated in northern part of the oblast
- Optical Sentinel-2 monthly composites suited better than Sentinel-1 to map HS
- HS has unique phenology and specific spectral characteristics that gives preconditions for separability from other land cover classes
- Participatory methods became useful and valid approach for crowdsourcing training and validation data collection
- The proposed workflow is suited for replication of study in other parts of northern Eurasia where **HS** occurs.

Acknowledgments: BorscheVictory volunteers, Sergey Myshlyakov

References

- 1. Weichert, F. 2021 Mapping of Invasive Giant Hogweed (Heracleum Sosnowskyi) with Sentinel-2 Multispectral Time-Series in Temperate Europe, Master Thesis, University of Copenhagen
- 2. Abramova, L. M., Golovanov, Y. M. & Rogozhnikova, D. R., 2021. Sosnowskyi Hogweed (Heracleum Sosnowskyi Manden.) in Bashikortostan. Russian Journal of Biological Invasions, pp. 1-12.
- 3. Belgiu, M. & Drägut, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, pp. 24-31.
- Мышляков СГ, Артёмова АИ 2017. Картографирование мест произрастания борщевика Сосновского по космическим снимкам Sentinel-2. Пятнадцатая Всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса", Москва, Россия